miR-370 and miR-373 regulate the pathogenesis of osteoarthritis by modulating one-carbon metabolism via SHMT-2 and MECP-2, respectively
نویسندگان
چکیده
The aim of this study was to determine the mechanism underlying the association between one-carbon metabolism and DNA methylation during chronic degenerative joint disorder, osteoarthritis (OA). Articular chondrocytes were isolated from human OA cartilage and normal cartilage biopsied, and the degree of cartilage degradation was determined by safranin O staining. We found that the expression levels of SHMT-2 and MECP-2 were increased in OA chondrocytes, and 3'UTR reporter assays showed that SHMT-2 and MECP-2 are the direct targets of miR-370 and miR-373, respectively, in human articular chondrocytes. Our experiments showed that miR-370 and miR-373 levels were significantly lower in OA chondrocytes compared to normal chondrocytes. Overexpression of miR-370 or miR-373, or knockdown of SHMT-2 or MECP-2 reduced both MMP-13 expression and apoptotic cell death in cultured OA chondrocytes. In vivo, we found that introduction of miR-370 or miR-373 into the cartilage of mice that had undergone destabilization of the medial meniscus (DMM) surgery significantly reduced the cartilage destruction in this model, whereas introduction of SHMT-2 or MECP-2 increased the severity of cartilage destruction. Together, these results show that miR-370 and miR-373 contribute to the pathogenesis of OA and act as negative regulators of SHMT-2 and MECP-2, respectively.
منابع مشابه
miR‐373 regulates inflammatory cytokine‐mediated chondrocyte proliferation in osteoarthritis by targeting the P2X7 receptor
Inflammatory cytokines commonly initiate extreme changes in the synovium and cartilage microenvironment of osteoarthritis (OA) patients, which subsequently cause cellular dysfunction, especially in chondrocytes. It has been reported that induction of the purinergic P2X7 receptor (P2X7R) can regulate the expression of a variety of inflammatory factors, including interleukin (IL)-6 and -8, leadin...
متن کاملDownregulation of HMGB1 by miR-103a-3p Promotes Cell Proliferation, Alleviates Apoptosis and Inflammation in a Cell Model of Osteoarthritis
Background: MiR-103a-3p is a small non-coding RNA and has been reported to be involved in osteogenic proliferation and differentiation, but the role of miR-103a-3p in human osteoarthritis (OA) remains unclear. Objectives: In this study, we aimed to explore its function and molecular target in chondrocytes during OA pathogenesis. Materials an...
متن کاملThe protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370
Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...
متن کاملMicroRNA regulation of DNA repair gene expression in hypoxic stress.
Genetic instability is a hallmark of cancer; the hypoxic tumor microenvironment has been implicated as a cause of this phenomenon. MicroRNAs (miR) are small nonprotein coding RNAs that can regulate various cellular pathways. We report here that two miRs, miR-210 and miR-373, are up-regulated in a hypoxia-inducible factor-1alpha-dependent manner in hypoxic cells. Bioinformatics analyses suggeste...
متن کاملmiR-320 regulates inflammation in EAE through interference with TGF-β signaling pathway
Background: MicroRNAs are small noncoding RNAs that regulate gene expression and involve in many cellular and physiological mechanisems. Recent studies have revealed that dysregulation of microRNAs might contribute to autoimmune disorders such as multiple sclerosis. Based on these findings, we examined the potential role of miR-320 isoforms, miR-320-3p and miR-320-5p, in the context of autoimmu...
متن کامل